MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. 513.0 Aluminum

Both EN AC-21200 aluminum and 513.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is 513.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
55
Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 3.9 to 6.2
5.7
Fatigue Strength, MPa 110 to 130
97
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 410 to 440
200
Tensile Strength: Yield (Proof), MPa 270 to 360
120

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 550
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
34
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 38 to 40
20
Strength to Weight: Bending, points 41 to 43
28
Thermal Diffusivity, mm2/s 49
54
Thermal Shock Resistance, points 18 to 19
8.8

Alloy Composition

Aluminum (Al), % 93.3 to 95.7
91.9 to 95.1
Copper (Cu), % 4.0 to 5.0
0 to 0.1
Iron (Fe), % 0 to 0.2
0 to 0.4
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0.15 to 0.5
3.5 to 4.5
Manganese (Mn), % 0.2 to 0.5
0 to 0.3
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.1
0 to 0.3
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.1
1.4 to 2.2
Residuals, % 0
0 to 0.15