MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. C96400 Copper-nickel

EN AC-21200 aluminum belongs to the aluminum alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
140
Elongation at Break, % 3.9 to 6.2
25
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
51
Tensile Strength: Ultimate (UTS), MPa 410 to 440
490
Tensile Strength: Yield (Proof), MPa 270 to 360
260

Thermal Properties

Latent Heat of Fusion, J/g 390
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 660
1240
Melting Onset (Solidus), °C 550
1170
Specific Heat Capacity, J/kg-K 880
400
Thermal Conductivity, W/m-K 130
28
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
45
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
5.9
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
100
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
250
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 38 to 40
15
Strength to Weight: Bending, points 41 to 43
16
Thermal Diffusivity, mm2/s 49
7.8
Thermal Shock Resistance, points 18 to 19
17

Alloy Composition

Aluminum (Al), % 93.3 to 95.7
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 4.0 to 5.0
62.3 to 71.3
Iron (Fe), % 0 to 0.2
0.25 to 1.5
Lead (Pb), % 0 to 0.030
0 to 0.010
Magnesium (Mg), % 0.15 to 0.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 0.050
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5