MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. S17600 Stainless Steel

EN AC-21200 aluminum belongs to the aluminum alloys classification, while S17600 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
270 to 410
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.9 to 6.2
8.6 to 11
Fatigue Strength, MPa 110 to 130
300 to 680
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 410 to 440
940 to 1490
Tensile Strength: Yield (Proof), MPa 270 to 360
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
850 to 4390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 38 to 40
34 to 54
Strength to Weight: Bending, points 41 to 43
28 to 37
Thermal Diffusivity, mm2/s 49
4.1
Thermal Shock Resistance, points 18 to 19
31 to 50

Alloy Composition

Aluminum (Al), % 93.3 to 95.7
0 to 0.4
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.2
71.3 to 77.6
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0.15 to 0.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.050
6.0 to 7.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0.4 to 1.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0