MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. S32506 Stainless Steel

EN AC-21200 aluminum belongs to the aluminum alloys classification, while S32506 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is S32506 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
270
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.9 to 6.2
21
Fatigue Strength, MPa 110 to 130
330
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 410 to 440
710
Tensile Strength: Yield (Proof), MPa 270 to 360
500

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
20
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.9
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
130
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
620
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 38 to 40
25
Strength to Weight: Bending, points 41 to 43
23
Thermal Diffusivity, mm2/s 49
4.3
Thermal Shock Resistance, points 18 to 19
19

Alloy Composition

Aluminum (Al), % 93.3 to 95.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.2
60.8 to 67.4
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0.15 to 0.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 0.050
5.5 to 7.2
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.9
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
0.050 to 0.3
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0