MakeItFrom.com
Menu (ESC)

EN AC-21200 Aluminum vs. S35125 Stainless Steel

EN AC-21200 aluminum belongs to the aluminum alloys classification, while S35125 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-21200 aluminum and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.9 to 6.2
39
Fatigue Strength, MPa 110 to 130
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 410 to 440
540
Tensile Strength: Yield (Proof), MPa 270 to 360
230

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.0
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 22
170
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 930
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 38 to 40
19
Strength to Weight: Bending, points 41 to 43
18
Thermal Diffusivity, mm2/s 49
3.1
Thermal Shock Resistance, points 18 to 19
12

Alloy Composition

Aluminum (Al), % 93.3 to 95.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.2
36.2 to 45.8
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0.15 to 0.5
0
Manganese (Mn), % 0.2 to 0.5
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.050
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.1
0