MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. ASTM Grade HD Steel

EN AC-41000 aluminum belongs to the aluminum alloys classification, while ASTM grade HD steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is ASTM grade HD steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 4.5
9.1
Fatigue Strength, MPa 58 to 71
140
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 170 to 280
590
Tensile Strength: Yield (Proof), MPa 80 to 210
270

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 630
1370
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.2
3.1
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
44
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
26
Strength to Weight: Axial, points 18 to 29
21
Strength to Weight: Bending, points 26 to 35
20
Thermal Diffusivity, mm2/s 69
4.3
Thermal Shock Resistance, points 7.8 to 13
19

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.6
58.4 to 70
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
4.0 to 7.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.6 to 2.4
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0