MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. EN 1.4606 Stainless Steel

EN AC-41000 aluminum belongs to the aluminum alloys classification, while EN 1.4606 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 4.5
23 to 39
Fatigue Strength, MPa 58 to 71
240 to 420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 170 to 280
600 to 1020
Tensile Strength: Yield (Proof), MPa 80 to 210
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 630
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
14
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
6.0
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1160
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
200 to 1010
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 18 to 29
21 to 36
Strength to Weight: Bending, points 26 to 35
20 to 28
Thermal Diffusivity, mm2/s 69
3.7
Thermal Shock Resistance, points 7.8 to 13
21 to 35

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.6
49.2 to 59
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 0.050
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.6 to 2.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0