MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. EN 1.4837 Stainless Steel

EN AC-41000 aluminum belongs to the aluminum alloys classification, while EN 1.4837 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is EN 1.4837 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 57 to 97
150
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 4.5
6.8
Fatigue Strength, MPa 58 to 71
120
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 170 to 280
500
Tensile Strength: Yield (Proof), MPa 80 to 210
250

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 630
1350
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 170
14
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.2
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1160
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
29
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 18 to 29
18
Strength to Weight: Bending, points 26 to 35
18
Thermal Diffusivity, mm2/s 69
3.7
Thermal Shock Resistance, points 7.8 to 13
11

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.6
53.4 to 63.7
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
11 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 1.6 to 2.4
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0