MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. R31537 Cobalt

EN AC-41000 aluminum belongs to the aluminum alloys classification, while R31537 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is R31537 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
220
Elongation at Break, % 4.5
14 to 23
Fatigue Strength, MPa 58 to 71
310 to 480
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
87
Tensile Strength: Ultimate (UTS), MPa 170 to 280
1000 to 1340
Tensile Strength: Yield (Proof), MPa 80 to 210
590 to 940

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 630
1290
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 170
13
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.1

Otherwise Unclassified Properties

Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.2
8.1
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1160
530

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
140 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
780 to 1990
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 18 to 29
33 to 44
Strength to Weight: Bending, points 26 to 35
26 to 32
Thermal Diffusivity, mm2/s 69
3.4
Thermal Shock Resistance, points 7.8 to 13
24 to 32

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0
Carbon (C), % 0
0 to 0.14
Chromium (Cr), % 0
26 to 30
Cobalt (Co), % 0
58.9 to 69
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.6
0 to 0.75
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 0 to 0.050
0 to 1.0
Nitrogen (N), % 0
0 to 0.25
Silicon (Si), % 1.6 to 2.4
0 to 1.0
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0