MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. SAE-AISI O7 Steel

EN AC-41000 aluminum belongs to the aluminum alloys classification, while SAE-AISI O7 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is SAE-AISI O7 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 170 to 280
680 to 2110

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 630
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
41
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.0
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
2.3
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1160
52

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 18 to 29
24 to 74
Strength to Weight: Bending, points 26 to 35
22 to 46
Thermal Diffusivity, mm2/s 69
11
Thermal Shock Resistance, points 7.8 to 13
23 to 70

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0
Carbon (C), % 0
1.1 to 1.3
Chromium (Cr), % 0
0.35 to 0.85
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.6
92.9 to 97.6
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0 to 0.050
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 1.6 to 2.4
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Tungsten (W), % 0
1.0 to 2.0
Vanadium (V), % 0
0 to 0.4
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0