MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. Type 3 Magnetic Alloy

EN AC-41000 aluminum belongs to the aluminum alloys classification, while Type 3 magnetic alloy belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is Type 3 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
180
Elongation at Break, % 4.5
43
Fatigue Strength, MPa 58 to 71
170
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
70
Tensile Strength: Ultimate (UTS), MPa 170 to 280
550
Tensile Strength: Yield (Proof), MPa 80 to 210
210

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 630
1320
Specific Heat Capacity, J/kg-K 900
450
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.2
8.7
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1160
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
190
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
120
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 18 to 29
18
Strength to Weight: Bending, points 26 to 35
17
Thermal Shock Resistance, points 7.8 to 13
18

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
2.0 to 3.0
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.1
4.0 to 6.0
Iron (Fe), % 0 to 0.6
9.9 to 19
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
75 to 78
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 1.6 to 2.4
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0