MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. C19100 Copper

EN AC-41000 aluminum belongs to the aluminum alloys classification, while C19100 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is C19100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 4.5
17 to 37
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 170 to 280
250 to 630
Tensile Strength: Yield (Proof), MPa 80 to 210
75 to 550

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 630
1040
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 170
250
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
55
Electrical Conductivity: Equal Weight (Specific), % IACS 130
56

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
60 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
24 to 1310
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 18 to 29
7.7 to 20
Strength to Weight: Bending, points 26 to 35
9.9 to 18
Thermal Diffusivity, mm2/s 69
73
Thermal Shock Resistance, points 7.8 to 13
8.9 to 22

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0
Copper (Cu), % 0 to 0.1
96.5 to 98.6
Iron (Fe), % 0 to 0.6
0 to 0.2
Lead (Pb), % 0 to 0.050
0 to 0.1
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0
Nickel (Ni), % 0 to 0.050
0.9 to 1.3
Phosphorus (P), % 0
0.15 to 0.35
Silicon (Si), % 1.6 to 2.4
0
Tellurium (Te), % 0
0.35 to 0.6
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.5