MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. C28000 Muntz Metal

EN AC-41000 aluminum belongs to the aluminum alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
100
Elongation at Break, % 4.5
10 to 45
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 170 to 280
330 to 610
Tensile Strength: Yield (Proof), MPa 80 to 210
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 640
900
Melting Onset (Solidus), °C 630
900
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 170
120
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
28
Electrical Conductivity: Equal Weight (Specific), % IACS 130
31

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
110 to 670
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
20
Strength to Weight: Axial, points 18 to 29
11 to 21
Strength to Weight: Bending, points 26 to 35
13 to 20
Thermal Diffusivity, mm2/s 69
40
Thermal Shock Resistance, points 7.8 to 13
11 to 20

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0
Copper (Cu), % 0 to 0.1
59 to 63
Iron (Fe), % 0 to 0.6
0 to 0.070
Lead (Pb), % 0 to 0.050
0 to 0.3
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 1.6 to 2.4
0
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
36.3 to 41
Residuals, % 0
0 to 0.3