MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. N10003 Nickel

EN AC-41000 aluminum belongs to the aluminum alloys classification, while N10003 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 4.5
42
Fatigue Strength, MPa 58 to 71
260
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 170 to 280
780
Tensile Strength: Yield (Proof), MPa 80 to 210
320

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 640
1520
Melting Onset (Solidus), °C 630
1460
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 170
12
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.2
13
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1160
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
260
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 18 to 29
24
Strength to Weight: Bending, points 26 to 35
21
Thermal Diffusivity, mm2/s 69
3.1
Thermal Shock Resistance, points 7.8 to 13
21

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0 to 0.6
0 to 5.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
15 to 18
Nickel (Ni), % 0 to 0.050
64.8 to 79
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 1.6 to 2.4
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0 to 0.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0