MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. S41425 Stainless Steel

EN AC-41000 aluminum belongs to the aluminum alloys classification, while S41425 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is S41425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 57 to 97
280
Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 4.5
17
Fatigue Strength, MPa 58 to 71
450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 170 to 280
920
Tensile Strength: Yield (Proof), MPa 80 to 210
750

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 170
810
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 630
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1160
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
150
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
1420
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 18 to 29
33
Strength to Weight: Bending, points 26 to 35
27
Thermal Diffusivity, mm2/s 69
4.4
Thermal Shock Resistance, points 7.8 to 13
33

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12 to 15
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.6
74 to 81.9
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0.5 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.050
4.0 to 7.0
Nitrogen (N), % 0
0.060 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 1.6 to 2.4
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0