MakeItFrom.com
Menu (ESC)

EN AC-41000 Aluminum vs. S44800 Stainless Steel

EN AC-41000 aluminum belongs to the aluminum alloys classification, while S44800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-41000 aluminum and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 57 to 97
190
Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 4.5
23
Fatigue Strength, MPa 58 to 71
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
82
Tensile Strength: Ultimate (UTS), MPa 170 to 280
590
Tensile Strength: Yield (Proof), MPa 80 to 210
450

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 630
1410
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 170
17
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.8
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1160
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 11
120
Resilience: Unit (Modulus of Resilience), kJ/m3 46 to 300
480
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 18 to 29
21
Strength to Weight: Bending, points 26 to 35
20
Thermal Diffusivity, mm2/s 69
4.6
Thermal Shock Resistance, points 7.8 to 13
19

Alloy Composition

Aluminum (Al), % 95.2 to 97.6
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0 to 0.1
0 to 0.15
Iron (Fe), % 0 to 0.6
62.6 to 66.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0.3 to 0.5
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0 to 0.050
2.0 to 2.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 1.6 to 2.4
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0