MakeItFrom.com
Menu (ESC)

EN AC-42000 Aluminum vs. 5254 Aluminum

Both EN AC-42000 aluminum and 5254 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-42000 aluminum and the bottom bar is 5254 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 1.1 to 2.4
3.4 to 22
Fatigue Strength, MPa 67 to 76
110 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 170 to 270
240 to 350
Tensile Strength: Yield (Proof), MPa 95 to 230
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 600
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 160
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
32
Electrical Conductivity: Equal Weight (Specific), % IACS 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.7
11 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 370
73 to 550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
51
Strength to Weight: Axial, points 18 to 28
25 to 37
Strength to Weight: Bending, points 26 to 35
32 to 41
Thermal Diffusivity, mm2/s 66
52
Thermal Shock Resistance, points 7.9 to 12
10 to 16

Alloy Composition

Aluminum (Al), % 89.9 to 93.3
94.4 to 96.8
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 0 to 0.2
0 to 0.050
Iron (Fe), % 0 to 0.55
0 to 0.45
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.2 to 0.65
3.1 to 3.9
Manganese (Mn), % 0 to 0.35
0 to 0.010
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 6.5 to 7.5
0 to 0.45
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0 to 0.050
Zinc (Zn), % 0 to 0.15
0 to 0.2
Residuals, % 0
0 to 0.15