MakeItFrom.com
Menu (ESC)

EN AC-42000 Aluminum vs. S42010 Stainless Steel

EN AC-42000 aluminum belongs to the aluminum alloys classification, while S42010 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42000 aluminum and the bottom bar is S42010 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 1.1 to 2.4
18
Fatigue Strength, MPa 67 to 76
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 170 to 270
590
Tensile Strength: Yield (Proof), MPa 95 to 230
350

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
800
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 160
29
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 130
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.5
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.2
Embodied Energy, MJ/kg 150
30
Embodied Water, L/kg 1110
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.7
95
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 370
310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 18 to 28
21
Strength to Weight: Bending, points 26 to 35
20
Thermal Diffusivity, mm2/s 66
7.9
Thermal Shock Resistance, points 7.9 to 12
21

Alloy Composition

Aluminum (Al), % 89.9 to 93.3
0
Carbon (C), % 0
0.15 to 0.3
Chromium (Cr), % 0
13.5 to 15
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.55
80.9 to 85.6
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.2 to 0.65
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.85
Nickel (Ni), % 0 to 0.15
0.35 to 0.85
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0