MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. 5086 Aluminum

Both EN AC-42100 aluminum and 5086 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
65 to 100
Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 3.4 to 9.0
1.7 to 20
Fatigue Strength, MPa 76 to 82
88 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 280 to 290
270 to 390
Tensile Strength: Yield (Proof), MPa 210 to 230
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 600
590
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
31
Electrical Conductivity: Equal Weight (Specific), % IACS 140
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
86 to 770
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 30 to 31
28 to 40
Strength to Weight: Bending, points 37 to 38
34 to 44
Thermal Diffusivity, mm2/s 66
52
Thermal Shock Resistance, points 13
12 to 17

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
93 to 96.3
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0 to 0.050
0 to 0.1
Iron (Fe), % 0 to 0.19
0 to 0.5
Magnesium (Mg), % 0.25 to 0.45
3.5 to 4.5
Manganese (Mn), % 0 to 0.1
0.2 to 0.7
Silicon (Si), % 6.5 to 7.5
0 to 0.4
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 0 to 0.070
0 to 0.25
Residuals, % 0
0 to 0.15