MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. 5456 Aluminum

Both EN AC-42100 aluminum and 5456 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is 5456 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 3.4 to 9.0
11 to 18
Fatigue Strength, MPa 76 to 82
130 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 280 to 290
320 to 340
Tensile Strength: Yield (Proof), MPa 210 to 230
150 to 250

Thermal Properties

Latent Heat of Fusion, J/g 500
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 600
570
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
29
Electrical Conductivity: Equal Weight (Specific), % IACS 140
97

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
33 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
170 to 470
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 30 to 31
33 to 35
Strength to Weight: Bending, points 37 to 38
38 to 40
Thermal Diffusivity, mm2/s 66
48
Thermal Shock Resistance, points 13
14 to 15

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
92 to 94.8
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 0 to 0.050
0 to 0.1
Iron (Fe), % 0 to 0.19
0 to 0.4
Magnesium (Mg), % 0.25 to 0.45
4.7 to 5.5
Manganese (Mn), % 0 to 0.1
0.5 to 1.0
Silicon (Si), % 6.5 to 7.5
0 to 0.25
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.070
0 to 0.25
Residuals, % 0
0 to 0.15