MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. AWS ER90S-D2

EN AC-42100 aluminum belongs to the aluminum alloys classification, while AWS ER90S-D2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is AWS ER90S-D2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4 to 9.0
19
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 280 to 290
710
Tensile Strength: Yield (Proof), MPa 210 to 230
600

Thermal Properties

Latent Heat of Fusion, J/g 500
260
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
47
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1110
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
130
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
980
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 30 to 31
25
Strength to Weight: Bending, points 37 to 38
23
Thermal Diffusivity, mm2/s 66
13
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
0
Carbon (C), % 0
0.070 to 0.12
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.19
95.2 to 97.4
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
1.6 to 2.1
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
0 to 0.15
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0.5 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0
0 to 0.5