MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. EN 1.3520 Steel

EN AC-42100 aluminum belongs to the aluminum alloys classification, while EN 1.3520 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is EN 1.3520 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
190 to 220
Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 280 to 290
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 500
260
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 600
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 150
43
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1110
54

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 30 to 31
22 to 26
Strength to Weight: Bending, points 37 to 38
21 to 23
Thermal Diffusivity, mm2/s 66
12
Thermal Shock Resistance, points 13
18 to 22

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0
1.4 to 1.7
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.19
95.9 to 97.2
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
1.0 to 1.2
Molybdenum (Mo), % 0
0 to 0.1
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0.45 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0