MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. EN 1.4034 Stainless Steel

EN AC-42100 aluminum belongs to the aluminum alloys classification, while EN 1.4034 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is EN 1.4034 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4 to 9.0
11 to 14
Fatigue Strength, MPa 76 to 82
230 to 400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 280 to 290
690 to 900
Tensile Strength: Yield (Proof), MPa 210 to 230
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 500
270
Maximum Temperature: Mechanical, °C 170
770
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 150
30
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.0
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1110
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
81 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
400 to 1370
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 30 to 31
25 to 32
Strength to Weight: Bending, points 37 to 38
22 to 27
Thermal Diffusivity, mm2/s 66
8.1
Thermal Shock Resistance, points 13
24 to 32

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
0
Carbon (C), % 0
0.43 to 0.5
Chromium (Cr), % 0
12.5 to 14.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
83 to 87.1
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0