MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. EN 1.4905 Stainless Steel

EN AC-42100 aluminum belongs to the aluminum alloys classification, while EN 1.4905 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is EN 1.4905 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4 to 9.0
19
Fatigue Strength, MPa 76 to 82
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 280 to 290
740
Tensile Strength: Yield (Proof), MPa 210 to 230
510

Thermal Properties

Latent Heat of Fusion, J/g 500
270
Maximum Temperature: Mechanical, °C 170
660
Melting Completion (Liquidus), °C 610
1480
Melting Onset (Solidus), °C 600
1440
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
26
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
4.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1110
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
130
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
680
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 30 to 31
26
Strength to Weight: Bending, points 37 to 38
23
Thermal Diffusivity, mm2/s 66
7.0
Thermal Shock Resistance, points 13
25

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
0 to 0.040
Boron (B), % 0
0.00050 to 0.0050
Carbon (C), % 0
0.090 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
86.2 to 88.8
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0.1 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.050 to 0.090
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 6.5 to 7.5
0.1 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0