MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. EN 1.7383 Steel

EN AC-42100 aluminum belongs to the aluminum alloys classification, while EN 1.7383 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
170 to 180
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4 to 9.0
20 to 23
Fatigue Strength, MPa 76 to 82
210 to 270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 280 to 290
560 to 610
Tensile Strength: Yield (Proof), MPa 210 to 230
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 500
260
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 610
1470
Melting Onset (Solidus), °C 600
1430
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.9
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1110
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
110
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
240 to 420
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 30 to 31
20 to 22
Strength to Weight: Bending, points 37 to 38
19 to 20
Thermal Diffusivity, mm2/s 66
11
Thermal Shock Resistance, points 13
16 to 18

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.19
94.3 to 96.6
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0