MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. EN 1.7706 Steel

EN AC-42100 aluminum belongs to the aluminum alloys classification, while EN 1.7706 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is EN 1.7706 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
210
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.4 to 9.0
17
Fatigue Strength, MPa 76 to 82
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 280 to 290
690
Tensile Strength: Yield (Proof), MPa 210 to 230
500

Thermal Properties

Latent Heat of Fusion, J/g 500
260
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 610
1470
Melting Onset (Solidus), °C 600
1430
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.7
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
2.3
Embodied Energy, MJ/kg 150
32
Embodied Water, L/kg 1110
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
110
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
670
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 30 to 31
24
Strength to Weight: Bending, points 37 to 38
22
Thermal Diffusivity, mm2/s 66
11
Thermal Shock Resistance, points 13
20

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.19
94.7 to 97.1
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0.5 to 0.9
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 6.5 to 7.5
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0