MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. Nickel 689

EN AC-42100 aluminum belongs to the aluminum alloys classification, while nickel 689 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is nickel 689.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
350
Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.4 to 9.0
23
Fatigue Strength, MPa 76 to 82
420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 280 to 290
1250
Tensile Strength: Yield (Proof), MPa 210 to 230
690

Thermal Properties

Latent Heat of Fusion, J/g 500
330
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 610
1440
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 910
450
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.6
8.5
Embodied Carbon, kg CO2/kg material 8.0
11
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
240
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
1170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 30 to 31
41
Strength to Weight: Bending, points 37 to 38
30
Thermal Shock Resistance, points 13
35

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
0.75 to 1.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
18 to 20
Cobalt (Co), % 0
9.0 to 11
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
0 to 5.0
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
9.0 to 10.5
Nickel (Ni), % 0
48.3 to 60.9
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
2.3 to 2.8
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0