MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. C96200 Copper-nickel

EN AC-42100 aluminum belongs to the aluminum alloys classification, while C96200 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 3.4 to 9.0
23
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 280 to 290
350
Tensile Strength: Yield (Proof), MPa 210 to 230
190

Thermal Properties

Latent Heat of Fusion, J/g 500
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 610
1150
Melting Onset (Solidus), °C 600
1100
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 150
45
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
11
Electrical Conductivity: Equal Weight (Specific), % IACS 140
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 8.0
3.8
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1110
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
68
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
150
Stiffness to Weight: Axial, points 15
7.8
Stiffness to Weight: Bending, points 53
19
Strength to Weight: Axial, points 30 to 31
11
Strength to Weight: Bending, points 37 to 38
13
Thermal Diffusivity, mm2/s 66
13
Thermal Shock Resistance, points 13
12

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.050
83.6 to 90
Iron (Fe), % 0 to 0.19
1.0 to 1.8
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0
0 to 0.5