MakeItFrom.com
Menu (ESC)

EN AC-42100 Aluminum vs. S24000 Stainless Steel

EN AC-42100 aluminum belongs to the aluminum alloys classification, while S24000 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42100 aluminum and the bottom bar is S24000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 91
210
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.4 to 9.0
39
Fatigue Strength, MPa 76 to 82
370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 280 to 290
770
Tensile Strength: Yield (Proof), MPa 210 to 230
430

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 610
1390
Melting Onset (Solidus), °C 600
1350
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 22
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
7.6
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1 to 23
260
Resilience: Unit (Modulus of Resilience), kJ/m3 300 to 370
470
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 30 to 31
28
Strength to Weight: Bending, points 37 to 38
24
Thermal Shock Resistance, points 13
16

Alloy Composition

Aluminum (Al), % 91.3 to 93.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
61.5 to 69
Magnesium (Mg), % 0.25 to 0.45
0
Manganese (Mn), % 0 to 0.1
11.5 to 14.5
Nickel (Ni), % 0
2.3 to 3.7
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 6.5 to 7.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0