MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. 5082 Aluminum

Both EN AC-42200 aluminum and 5082 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
67
Elongation at Break, % 3.0 to 6.7
1.1
Fatigue Strength, MPa 86 to 90
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Tensile Strength: Ultimate (UTS), MPa 320
380 to 400
Tensile Strength: Yield (Proof), MPa 240 to 260
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 600
560
Specific Heat Capacity, J/kg-K 910
910
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
32
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
670 to 870
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
51
Strength to Weight: Axial, points 34 to 35
39 to 41
Strength to Weight: Bending, points 40 to 41
43 to 45
Thermal Diffusivity, mm2/s 66
54
Thermal Shock Resistance, points 15
17 to 18

Alloy Composition

Aluminum (Al), % 91 to 93.1
93.5 to 96
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 0.050
0 to 0.15
Iron (Fe), % 0 to 0.19
0 to 0.35
Magnesium (Mg), % 0.45 to 0.7
4.0 to 5.0
Manganese (Mn), % 0 to 0.1
0 to 0.15
Silicon (Si), % 6.5 to 7.5
0 to 0.2
Titanium (Ti), % 0 to 0.25
0 to 0.1
Zinc (Zn), % 0 to 0.070
0 to 0.25
Residuals, % 0
0 to 0.15