MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. 5083 Aluminum

Both EN AC-42200 aluminum and 5083 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 89 to 100
75 to 110
Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 3.0 to 6.7
1.1 to 17
Fatigue Strength, MPa 86 to 90
93 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 320
290 to 390
Tensile Strength: Yield (Proof), MPa 240 to 260
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 600
580
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
29
Electrical Conductivity: Equal Weight (Specific), % IACS 140
96

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
95 to 860
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 34 to 35
29 to 40
Strength to Weight: Bending, points 40 to 41
36 to 44
Thermal Diffusivity, mm2/s 66
48
Thermal Shock Resistance, points 15
12 to 17

Alloy Composition

Aluminum (Al), % 91 to 93.1
92.4 to 95.6
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0 to 0.050
0 to 0.1
Iron (Fe), % 0 to 0.19
0 to 0.4
Magnesium (Mg), % 0.45 to 0.7
4.0 to 4.9
Manganese (Mn), % 0 to 0.1
0.4 to 1.0
Silicon (Si), % 6.5 to 7.5
0 to 0.4
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 0 to 0.070
0 to 0.25
Residuals, % 0
0 to 0.15