MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. 7178 Aluminum

Both EN AC-42200 aluminum and 7178 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is 7178 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 3.0 to 6.7
4.5 to 12
Fatigue Strength, MPa 86 to 90
120 to 210
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 320
240 to 640
Tensile Strength: Yield (Proof), MPa 240 to 260
120 to 560

Thermal Properties

Latent Heat of Fusion, J/g 500
370
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 610
630
Melting Onset (Solidus), °C 600
480
Specific Heat Capacity, J/kg-K 910
860
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
31
Electrical Conductivity: Equal Weight (Specific), % IACS 140
91

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.6
3.1
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
24 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
110 to 2220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
45
Strength to Weight: Axial, points 34 to 35
21 to 58
Strength to Weight: Bending, points 40 to 41
28 to 54
Thermal Diffusivity, mm2/s 66
47
Thermal Shock Resistance, points 15
10 to 28

Alloy Composition

Aluminum (Al), % 91 to 93.1
85.4 to 89.5
Chromium (Cr), % 0
0.18 to 0.28
Copper (Cu), % 0 to 0.050
1.6 to 2.4
Iron (Fe), % 0 to 0.19
0 to 0.5
Magnesium (Mg), % 0.45 to 0.7
2.4 to 3.1
Manganese (Mn), % 0 to 0.1
0 to 0.3
Silicon (Si), % 6.5 to 7.5
0 to 0.4
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.070
6.3 to 7.3
Residuals, % 0
0 to 0.15

Comparable Variants