MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. ACI-ASTM CF10SMnN Steel

EN AC-42200 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF10SMnN steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is ACI-ASTM CF10SMnN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 89 to 100
190
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.0 to 6.7
34
Fatigue Strength, MPa 86 to 90
260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 320
660
Tensile Strength: Yield (Proof), MPa 240 to 260
330

Thermal Properties

Latent Heat of Fusion, J/g 500
340
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 610
1360
Melting Onset (Solidus), °C 600
1310
Specific Heat Capacity, J/kg-K 910
500
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.6
7.5
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
180
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
26
Strength to Weight: Axial, points 34 to 35
24
Strength to Weight: Bending, points 40 to 41
22
Thermal Shock Resistance, points 15
15

Alloy Composition

Aluminum (Al), % 91 to 93.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
59.1 to 65.4
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
7.0 to 9.0
Nickel (Ni), % 0
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 6.5 to 7.5
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0