MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. AISI 440C Stainless Steel

EN AC-42200 aluminum belongs to the aluminum alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.0 to 6.7
2.0 to 14
Fatigue Strength, MPa 86 to 90
260 to 840
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 320
710 to 1970
Tensile Strength: Yield (Proof), MPa 240 to 260
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 500
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 610
1480
Melting Onset (Solidus), °C 600
1370
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 150
22
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1110
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
39 to 88
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 34 to 35
26 to 71
Strength to Weight: Bending, points 40 to 41
23 to 46
Thermal Diffusivity, mm2/s 66
6.0
Thermal Shock Resistance, points 15
26 to 71

Alloy Composition

Aluminum (Al), % 91 to 93.1
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
78 to 83.1
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0