MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. ASTM Grade HP Steel

EN AC-42200 aluminum belongs to the aluminum alloys classification, while ASTM grade HP steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is ASTM grade HP steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 89 to 100
140
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.0 to 6.7
5.1
Fatigue Strength, MPa 86 to 90
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 320
490
Tensile Strength: Yield (Proof), MPa 240 to 260
260

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1370
Melting Onset (Solidus), °C 600
1330
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
5.8
Embodied Energy, MJ/kg 150
82
Embodied Water, L/kg 1110
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
21
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 34 to 35
17
Strength to Weight: Bending, points 40 to 41
17
Thermal Diffusivity, mm2/s 66
3.2
Thermal Shock Resistance, points 15
11

Alloy Composition

Aluminum (Al), % 91 to 93.1
0
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0
24 to 28
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
29.2 to 42.7
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 2.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0