MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. EN 1.4923 Stainless Steel

EN AC-42200 aluminum belongs to the aluminum alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.0 to 6.7
12 to 21
Fatigue Strength, MPa 86 to 90
300 to 440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 320
870 to 980
Tensile Strength: Yield (Proof), MPa 240 to 260
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 500
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 600
1410
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 150
24
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1110
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
570 to 1580
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 34 to 35
31 to 35
Strength to Weight: Bending, points 40 to 41
26 to 28
Thermal Diffusivity, mm2/s 66
6.5
Thermal Shock Resistance, points 15
30 to 34

Alloy Composition

Aluminum (Al), % 91 to 93.1
0
Carbon (C), % 0
0.18 to 0.24
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
83.5 to 87.1
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0

Comparable Variants