MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. EN 1.5701 Steel

EN AC-42200 aluminum belongs to the aluminum alloys classification, while EN 1.5701 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is EN 1.5701 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 89 to 100
130 to 160
Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 320
430 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
45
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1110
49

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 34 to 35
15 to 46
Strength to Weight: Bending, points 40 to 41
16 to 34
Thermal Diffusivity, mm2/s 66
12
Thermal Shock Resistance, points 15
13 to 38

Alloy Composition

Aluminum (Al), % 91 to 93.1
0
Carbon (C), % 0
0.090 to 0.15
Chromium (Cr), % 0
0.4 to 0.7
Copper (Cu), % 0 to 0.050
0 to 0.25
Iron (Fe), % 0 to 0.19
97.2 to 98.7
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Nickel (Ni), % 0
0.5 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0