MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. G-CoCr28 Cobalt

EN AC-42200 aluminum belongs to the aluminum alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.0 to 6.7
6.7
Fatigue Strength, MPa 86 to 90
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
83
Tensile Strength: Ultimate (UTS), MPa 320
560
Tensile Strength: Yield (Proof), MPa 240 to 260
260

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Maximum Temperature: Mechanical, °C 170
1200
Melting Completion (Liquidus), °C 610
1330
Melting Onset (Solidus), °C 600
1270
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
8.5
Thermal Expansion, µm/m-K 22
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
100
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 8.0
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 1110
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
31
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
160
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 34 to 35
19
Strength to Weight: Bending, points 40 to 41
19
Thermal Diffusivity, mm2/s 66
2.2
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 91 to 93.1
0
Carbon (C), % 0
0.050 to 0.25
Chromium (Cr), % 0
27 to 30
Cobalt (Co), % 0
48 to 52
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
9.7 to 24.5
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0