MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. Nickel 908

EN AC-42200 aluminum belongs to the aluminum alloys classification, while nickel 908 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is nickel 908.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
180
Elongation at Break, % 3.0 to 6.7
11
Fatigue Strength, MPa 86 to 90
450
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
70
Tensile Strength: Ultimate (UTS), MPa 320
1340
Tensile Strength: Yield (Proof), MPa 240 to 260
930

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 610
1430
Melting Onset (Solidus), °C 600
1380
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 22
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.6
8.3
Embodied Carbon, kg CO2/kg material 8.0
9.3
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1110
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
140
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
2340
Stiffness to Weight: Axial, points 15
12
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 34 to 35
45
Strength to Weight: Bending, points 40 to 41
33
Thermal Diffusivity, mm2/s 66
2.9
Thermal Shock Resistance, points 15
61

Alloy Composition

Aluminum (Al), % 91 to 93.1
0.75 to 1.3
Boron (B), % 0
0 to 0.012
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
3.8 to 4.5
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.19
35.6 to 44.6
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
47 to 51
Niobium (Nb), % 0
2.7 to 3.3
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.25
1.2 to 1.8
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0