MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. SAE-AISI 1017 Steel

EN AC-42200 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1017 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is SAE-AISI 1017 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 89 to 100
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.0 to 6.7
20 to 30
Fatigue Strength, MPa 86 to 90
170 to 270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 320
420 to 460
Tensile Strength: Yield (Proof), MPa 240 to 260
220 to 390

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 610
1470
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 150
53
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1110
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
88 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
130 to 400
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 34 to 35
15 to 16
Strength to Weight: Bending, points 40 to 41
16 to 17
Thermal Diffusivity, mm2/s 66
14
Thermal Shock Resistance, points 15
13 to 14

Alloy Composition

Aluminum (Al), % 91 to 93.1
0
Carbon (C), % 0
0.15 to 0.2
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
99.11 to 99.55
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0