MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. N06058 Nickel

EN AC-42200 aluminum belongs to the aluminum alloys classification, while N06058 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is N06058 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 3.0 to 6.7
45
Fatigue Strength, MPa 86 to 90
350
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
86
Tensile Strength: Ultimate (UTS), MPa 320
860
Tensile Strength: Yield (Proof), MPa 240 to 260
410

Thermal Properties

Latent Heat of Fusion, J/g 500
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 610
1540
Melting Onset (Solidus), °C 600
1490
Specific Heat Capacity, J/kg-K 910
420
Thermal Conductivity, W/m-K 150
9.8
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 8.0
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
320
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
370
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 34 to 35
27
Strength to Weight: Bending, points 40 to 41
23
Thermal Diffusivity, mm2/s 66
2.6
Thermal Shock Resistance, points 15
23

Alloy Composition

Aluminum (Al), % 91 to 93.1
0 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.050
0 to 0.5
Iron (Fe), % 0 to 0.19
0 to 1.5
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
19 to 21
Nickel (Ni), % 0
52.2 to 61
Nitrogen (N), % 0
0.020 to 0.15
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 6.5 to 7.5
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0 to 0.3
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0