MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. N06210 Nickel

EN AC-42200 aluminum belongs to the aluminum alloys classification, while N06210 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is N06210 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 3.0 to 6.7
51
Fatigue Strength, MPa 86 to 90
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 320
780
Tensile Strength: Yield (Proof), MPa 240 to 260
350

Thermal Properties

Latent Heat of Fusion, J/g 500
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 610
1570
Melting Onset (Solidus), °C 600
1510
Specific Heat Capacity, J/kg-K 910
420
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
85
Density, g/cm3 2.6
9.0
Embodied Carbon, kg CO2/kg material 8.0
17
Embodied Energy, MJ/kg 150
250
Embodied Water, L/kg 1110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
320
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
22
Strength to Weight: Axial, points 34 to 35
24
Strength to Weight: Bending, points 40 to 41
21
Thermal Shock Resistance, points 15
22

Alloy Composition

Aluminum (Al), % 91 to 93.1
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
18 to 20
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
0 to 1.0
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
18 to 20
Nickel (Ni), % 0
54.8 to 62.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 6.5 to 7.5
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tantalum (Ta), % 0
1.5 to 2.2
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0