MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. N06650 Nickel

EN AC-42200 aluminum belongs to the aluminum alloys classification, while N06650 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is N06650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.0 to 6.7
50
Fatigue Strength, MPa 86 to 90
420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
82
Tensile Strength: Ultimate (UTS), MPa 320
900
Tensile Strength: Yield (Proof), MPa 240 to 260
460

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 610
1500
Melting Onset (Solidus), °C 600
1450
Specific Heat Capacity, J/kg-K 910
440
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.6
Embodied Carbon, kg CO2/kg material 8.0
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
380
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
490
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 34 to 35
29
Strength to Weight: Bending, points 40 to 41
24
Thermal Shock Resistance, points 15
24

Alloy Composition

Aluminum (Al), % 91 to 93.1
0.050 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.19
12 to 16
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
9.5 to 12.5
Nickel (Ni), % 0
44.4 to 58.9
Niobium (Nb), % 0
0.050 to 0.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 6.5 to 7.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0