MakeItFrom.com
Menu (ESC)

EN AC-42200 Aluminum vs. S17600 Stainless Steel

EN AC-42200 aluminum belongs to the aluminum alloys classification, while S17600 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-42200 aluminum and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 89 to 100
270 to 410
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.0 to 6.7
8.6 to 11
Fatigue Strength, MPa 86 to 90
300 to 680
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 320
940 to 1490
Tensile Strength: Yield (Proof), MPa 240 to 260
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
890
Melting Completion (Liquidus), °C 610
1430
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1110
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.0 to 20
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 410 to 490
850 to 4390
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 34 to 35
34 to 54
Strength to Weight: Bending, points 40 to 41
28 to 37
Thermal Diffusivity, mm2/s 66
4.1
Thermal Shock Resistance, points 15
31 to 50

Alloy Composition

Aluminum (Al), % 91 to 93.1
0 to 0.4
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.19
71.3 to 77.6
Magnesium (Mg), % 0.45 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
6.0 to 7.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0.4 to 1.2
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0