MakeItFrom.com
Menu (ESC)

EN AC-43000 Aluminum vs. CC383H Copper-nickel

EN AC-43000 aluminum belongs to the aluminum alloys classification, while CC383H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43000 aluminum and the bottom bar is CC383H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 94
130
Elastic (Young's, Tensile) Modulus, GPa 71
140
Elongation at Break, % 1.1 to 2.5
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
52
Tensile Strength: Ultimate (UTS), MPa 180 to 270
490
Tensile Strength: Yield (Proof), MPa 97 to 230
260

Thermal Properties

Latent Heat of Fusion, J/g 540
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 600
1180
Melting Onset (Solidus), °C 590
1130
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 140
29
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
5.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
44
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 7.8
5.7
Embodied Energy, MJ/kg 150
83
Embodied Water, L/kg 1070
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
84
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
250
Stiffness to Weight: Axial, points 15
8.6
Stiffness to Weight: Bending, points 54
19
Strength to Weight: Axial, points 20 to 29
15
Strength to Weight: Bending, points 28 to 36
16
Thermal Diffusivity, mm2/s 60
8.1
Thermal Shock Resistance, points 8.6 to 12
17

Alloy Composition

Aluminum (Al), % 87 to 90.8
0 to 0.010
Bismuth (Bi), % 0
0 to 0.010
Boron (B), % 0
0 to 0.010
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0
0 to 0.030
Copper (Cu), % 0 to 0.050
64 to 69.1
Iron (Fe), % 0 to 0.55
0.5 to 1.5
Lead (Pb), % 0 to 0.050
0 to 0.010
Magnesium (Mg), % 0.2 to 0.45
0 to 0.010
Manganese (Mn), % 0 to 0.45
0.6 to 1.2
Nickel (Ni), % 0 to 0.050
29 to 31
Niobium (Nb), % 0
0.5 to 1.0
Phosphorus (P), % 0
0 to 0.010
Selenium (Se), % 0
0 to 0.010
Silicon (Si), % 9.0 to 11
0.3 to 0.7
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0 to 0.15
0