MakeItFrom.com
Menu (ESC)

EN AC-43000 Aluminum vs. N06210 Nickel

EN AC-43000 aluminum belongs to the aluminum alloys classification, while N06210 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43000 aluminum and the bottom bar is N06210 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 1.1 to 2.5
51
Fatigue Strength, MPa 68 to 76
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
85
Tensile Strength: Ultimate (UTS), MPa 180 to 270
780
Tensile Strength: Yield (Proof), MPa 97 to 230
350

Thermal Properties

Latent Heat of Fusion, J/g 540
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 600
1570
Melting Onset (Solidus), °C 590
1510
Specific Heat Capacity, J/kg-K 900
420
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
85
Density, g/cm3 2.6
9.0
Embodied Carbon, kg CO2/kg material 7.8
17
Embodied Energy, MJ/kg 150
250
Embodied Water, L/kg 1070
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
320
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
22
Strength to Weight: Axial, points 20 to 29
24
Strength to Weight: Bending, points 28 to 36
21
Thermal Shock Resistance, points 8.6 to 12
22

Alloy Composition

Aluminum (Al), % 87 to 90.8
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
18 to 20
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.55
0 to 1.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 0.5
Molybdenum (Mo), % 0
18 to 20
Nickel (Ni), % 0 to 0.050
54.8 to 62.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.0 to 11
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tantalum (Ta), % 0
1.5 to 2.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0