MakeItFrom.com
Menu (ESC)

EN AC-43000 Aluminum vs. N08024 Nickel

EN AC-43000 aluminum belongs to the aluminum alloys classification, while N08024 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-43000 aluminum and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.1 to 2.5
34
Fatigue Strength, MPa 68 to 76
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 180 to 270
620
Tensile Strength: Yield (Proof), MPa 97 to 230
270

Thermal Properties

Latent Heat of Fusion, J/g 540
310
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 590
1380
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 7.8
7.2
Embodied Energy, MJ/kg 150
99
Embodied Water, L/kg 1070
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
170
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 20 to 29
21
Strength to Weight: Bending, points 28 to 36
20
Thermal Diffusivity, mm2/s 60
3.2
Thermal Shock Resistance, points 8.6 to 12
15

Alloy Composition

Aluminum (Al), % 87 to 90.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22.5 to 25
Copper (Cu), % 0 to 0.050
0.5 to 1.5
Iron (Fe), % 0 to 0.55
26.6 to 38.4
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.45
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0 to 0.050
35 to 40
Niobium (Nb), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 9.0 to 11
0 to 0.5
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0