MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. 5005 Aluminum

Both EN AC-43100 aluminum and 5005 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is 5005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 94
28 to 64
Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 1.1 to 2.5
1.1 to 23
Fatigue Strength, MPa 68 to 76
38 to 86
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 180 to 270
110 to 230
Tensile Strength: Yield (Proof), MPa 97 to 230
41 to 210

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 590
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
200
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
52
Electrical Conductivity: Equal Weight (Specific), % IACS 130
170

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
2.3 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
12 to 320
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 20 to 29
11 to 23
Strength to Weight: Bending, points 28 to 36
19 to 31
Thermal Diffusivity, mm2/s 60
82
Thermal Shock Resistance, points 8.6 to 12
4.9 to 10

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
97 to 99.5
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.55
0 to 0.7
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
0.5 to 1.1
Manganese (Mn), % 0 to 0.45
0 to 0.2
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 9.0 to 11
0 to 0.3
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants