MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. 5154A Aluminum

Both EN AC-43100 aluminum and 5154A aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 94
58 to 100
Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 1.1 to 2.5
1.1 to 19
Fatigue Strength, MPa 68 to 76
83 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 180 to 270
230 to 370
Tensile Strength: Yield (Proof), MPa 97 to 230
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 540
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 590
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
32
Electrical Conductivity: Equal Weight (Specific), % IACS 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
68 to 760
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
51
Strength to Weight: Axial, points 20 to 29
24 to 38
Strength to Weight: Bending, points 28 to 36
31 to 43
Thermal Diffusivity, mm2/s 60
53
Thermal Shock Resistance, points 8.6 to 12
10 to 16

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
93.7 to 96.9
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.55
0 to 0.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
3.1 to 3.9
Manganese (Mn), % 0 to 0.45
0 to 0.5
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 9.0 to 11
0 to 0.5
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants