MakeItFrom.com
Menu (ESC)

EN AC-43100 Aluminum vs. A535.0 Aluminum

Both EN AC-43100 aluminum and A535.0 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-43100 aluminum and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 1.1 to 2.5
9.0
Fatigue Strength, MPa 68 to 76
95
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 180 to 270
250
Tensile Strength: Yield (Proof), MPa 97 to 230
120

Thermal Properties

Latent Heat of Fusion, J/g 540
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 600
620
Melting Onset (Solidus), °C 590
550
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 140
100
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
23
Electrical Conductivity: Equal Weight (Specific), % IACS 130
79

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.6
Embodied Carbon, kg CO2/kg material 7.8
9.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.9 to 5.7
19
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 360
120
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 54
51
Strength to Weight: Axial, points 20 to 29
26
Strength to Weight: Bending, points 28 to 36
33
Thermal Diffusivity, mm2/s 60
42
Thermal Shock Resistance, points 8.6 to 12
11

Alloy Composition

Aluminum (Al), % 86.9 to 90.8
91.4 to 93.4
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.55
0 to 0.2
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.2 to 0.45
6.5 to 7.5
Manganese (Mn), % 0 to 0.45
0.1 to 0.25
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 9.0 to 11
0 to 0.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.15